--> --> -->

Blogs

25
Oct 2023

The Science Behind Perfecting Flexible Package Seal Integrity

The Science Behind Perfecting Flexible Package Seal Integrity

Flexible packaging has become increasingly popular in various industries due to its versatility and cost-effectiveness. It is used for packaging a wide range of products, including food, pharmaceuticals, electronics, and more. It includes materials like pouches, bags, sachets, and wraps made from materials such as plastic, foil, paper, and laminates. Flexible packaging offers several advantages, such as being lightweight, space-efficient, and customizable in terms of design.

Flexible package seal integrity testing is of paramount importance due to its direct impact on product quality, safety, and consumer satisfaction. A secure and intact seal serves as the primary defense against external factors that could compromise the contents of the packaging. This includes preventing the ingress of moisture, oxygen, and other contaminants, all of which can adversely affect the product's shelf life, flavor, texture, and overall quality. A compromised seal not only risks the product's integrity but also raises concerns related to food safety and hygiene. In industries such as food and pharmaceuticals, maintaining seal integrity is vital to prevent potential health hazards and economic losses.

Furthermore, a strong focus on flexible package seal integrity testing is crucial for businesses aiming to uphold their brand reputation and avoid costly recalls. Products with compromised seals could lead to customer dissatisfaction. By implementing rigorous seal integrity testing protocols, manufacturers can ensure that their products remain fresh, safe, and free from contaminants, thereby safeguarding their brand's image and preserving customer loyalty.

Package seal quality inspection using Airborne Ultrasound Technology

PTI's Airborne ultrasound technology is a non-destructive, non-invasive method for seal integrity testing of flexible packages. It is a deterministic, quantitative test method and also an ASTM Test Method F3004-13. It is based on the principle that ultrasound waves are reflected at different rates depending on the density of the material they are traveling through. When ultrasound waves are transmitted through a package seal, any defects in the seal will cause the signal waves to be reflected differently, resulting in a change in the signal strength.

Airborne ultrasound technology is a versatile and reliable method for testing seals on a wide variety of flexible packaging materials, including films, foils, laminates, and pouches. It is also capable of testing seals on a variety of product types, including food and beverage products, pharmaceutical products, and medical device products.

PTI offers two configurations of Airborne ultrasound testing technology: Seal-Scan and Seal-Sensor. Seal-Scan is a high-resolution method that inspects and analyzes pouch seals non-destructively offline. Seal-Sensor is designed for 100% online pouch seal inspection.

Benefits of Airborne Ultrasound Technology

  • Non-destructive and non-invasive
  • Deterministic, quantitative test results
  • ASTM Test Method F3004-13 compliant
  • Capable of testing a wide range of flexible packaging materials
  • Detects a variety of seal defects, including leaks, misaligned seals, incomplete seals, missing seals, channel defects, pin holes, and porosity
  • High-speed inspection capabilities
  • Easy to integrate into production lines

The science behind perfecting flexible package seal integrity is a multidimensional approach that combines technological advancements with a commitment to product quality, safety, and brand reputation. Airborne ultrasound technology is just one example of how innovative methods are used to ensure that the seals on flexible packages remain strong, secure, and reliable.

Readmore...
seal integrity testing, flexible packaging, seal quality inspection, airborne ultrasound technology
402
14
Aug 2023

Technologies Involved in Automated Pouch Seal Inspection

Technologies Involved in Automated Pouch Seal Inspection

Automated pouch seal inspection is a technology-driven quality control process used to evaluate the integrity of seals on pouch packaging. It employs advanced machinery, sensors, and algorithms to detect and analyze seal defects, ensuring the quality, safety, and reliability of packaged products.

The purpose of automated pouch seal inspection is to identify and address any issues that may compromise the integrity of the seals. By automating the inspection process, manufacturers can achieve higher inspection speeds, greater accuracy, and improved overall efficiency compared to manual inspection methods. By implementing automated pouch seal inspection, manufacturers can improve their quality control processes, minimize the risk of product defects, and enhance customer satisfaction. The technology allows for increased inspection throughput, reduced labor costs, and the ability to detect even subtle seal defects that may be missed by manual inspection methods. Read on to learn more about the automated pouch seal inspection techniques offered by PTI.

Seal-Sensor Technology

Seal-Sensor™ is an airborne ultrasonic technique that inspects the final pouch seal 100% online non-destructively. The Seal-Sensor is an accurate, quantitative, fast and reliable method of testing pouch seals for defects. The Seal-Sensor detects incomplete seals, partial or weak areas of seals, and many other common defects in seals that appear visually acceptable but affect product quality, value and shelf life. In less than a second, a single linear scan (L-scan) of the pouch seal provides a pass/fail result and quantitative, traceable data.

Benefits of Seal-Sensor Technology

  • Deterministic inspection method producing quantitative results.
  • Non-destructive, non-invasive, no sample preparation.
  • Works for any material and combinations, regardless of color, transparency, print, surface finish and porosity.
  • Can be integrated for 100% online defect detection of the final pouch seal.
  • Repeatable and reliable results.
  • Eliminates subjective, manual vision inspection methods.
  • Economical, cost-effective solution for seal integrity testing of the final pouch seal.

VeriPac LPX Technology

Based on decades of consistent performance in the pharmaceutical, biologics, and medical device sectors, VeriPac vacuum decay technology has been proven to be the most sensitive and reliable vacuum-based leak testing method available. It is a fully automated package quality inspection system for 100% inline testing. The LPX enables enhanced automated testing that offers a high degree of confidence in the efficiency of the packaging procedure. The LPX is an effective and reliable solution that enables process-related quality issues to be identified and resolved as soon as possible.

The VeriPac LPX has a dynamic robotic design that is adjusted to your production needs. To fulfill the demands of a manufacturing line, the LPX Series offers modular, scalable solutions. With the help of this flexible platform, a range of package forms may be reliably tested. Flexible packaging, rigid containers, and parenteral pharmaceuticals are some of the applications of LPX automation.

Benefits of VeriPac LPX Technology

  • Automated testing enables the highest level of container quality assurance.
  • Deterministic, quantitative test method.
  • ASTM Test Method F2338 and FDA standard, ISO 11607.
  • Highly accurate test results - low false positives and false negatives.
  • Non-destructive, non-subjective, no sample preparation.
  • Pick-and-Place option back into the production line.
  • Auto reject option of defects removed from the production line.
  • USP <1207> compliant.

Automated pouch seal inspection relies on various technologies to ensure the quality and integrity of pouch seals. Manufacturers can achieve comprehensive and reliable pouch seal inspection, ensuring product quality and customer safety. The specific technologies employed may vary depending on the industry, application, and quality standards. Automated pouch seal inspection plays a crucial role in maintaining the integrity of packaged products and preventing issues such as leaks, contamination, or compromised freshness.

Readmore...
automated testing, automated solution, seal integrity testing, container closure integrity, vacuum decay leak testing
67
11
Aug 2023

Understanding Airborne Ultrasound Technology

Understanding Airborne Ultrasound Technology

Since many years ago, manufacturers have tested the quality of container closures, and their perceived value has constantly grown. Companies that once relied on probabilistic techniques like the blue dye test are now aiming to use a more reliable and predictable procedure for integrity testing of various package formats. The pharmaceutical industry is getting ready to adapt to the deterministic testing world in order to enhance quality, increase efficiency, and comply with changing regulatory standards.

Overview of Airborne Ultrasound Technology

Airborne ultrasound technology is a seal quality inspection technique. It is an ASTM test method F3004, the FDA approved standard for seal quality testing. Such tests are mainly performed to provide enhanced seal quality testing of pouches, flexible packages and tray seals. Airborne ultrasound technology ensures in-depth seal quality analysis and applies to multiple packaging materials including Tyvek, paper, foil, film, aluminum, plastic and poly.

In this technique, sound waves are reflected when ultrasound waves pass through the package seal. Signal strength is reduced or eliminated in the presence of leakage / fault. Such deviations are closely monitored to detect leakage. The inability to detect non-leak defects is a common challenge faced by most leak test methods. However, with Airborne ultrasound technology, users can identify various types of seal defects; visible and invisible, leaky and non-leaky, process-related and random.

Seal-Scan and Seal-Sensor Technology

Seal-Scan and Seal-Sensor are the two variants of Airborne ultrasound technology that utilizes non-contact airborne ultrasonic testing technology. With advancements in the form of seal-scans and seal-sensors, Airborne ultrasound technology has proven to be the most effective method for non-destructive seal integrity testing in both offline laboratory testing for seal quality analysis and 100% inline testing on the production line.

Seal-Scan® is a non-destructive offline technology that is highly effective in inspecting and analyzing pouch seal defects. It is a deterministic, quantitative, high-resolution package integrity testing method for identifying defects and sealing integrity for consistency. What makes this technique unique is that it is a non-invasive technique and requires no sample preparation. Seal-Scan® provides advanced digital imaging software tools for process control, offering in-depth seal quality analysis. This technology is capable of producing opto-acoustic images and detailed statistical analysis using L-scan and C-scan modes. An L-scan is a single linear scan along the x-axis of the seal that provides a line graph of seal integrity and simulates an online inspection. A C-scan produces multiple scans (in the X and Y-axis of the seal area) that provide a high-resolution ultrasonic image of the seal structure.

Seal-Sensor™ is an Airborne ultrasonic technology (ABUS) that non-destructively inspects the final pouch seal 100% online. The seal sensor detects incomplete seals, partial or weak areas of the seal, and many other common defects in a seal that are visually acceptable, but have that affect product quality, value, and shelf life. A pass/fail result and quantitative, traceable data are produced in less than a second by a single linear scan (L-scan) of the pouch seal. The Seal-Sensor is a definitive, quantitative, rapid and reliable approach to inspecting pouch seals for defects.

Benefits of Airborne Ultrasound Technology

  • Non-destructive, non-subjective, no sample preparation.
  • Accurate and reliable results.
  • Can accommodate a number of packaging formats and materials.
  • Eliminates subjective manual inspection methods.
  • Deterministic inspection method producing quantitative results.
  • ASTM Test Method F3004 and FDA Standard for seal quality inspection.

Today, package integrity test solutions continue to evolve, driven by industry demands, regulatory requirements, and advancements in technology. The focus remains on improving sensitivity, accuracy, and efficiency to ensure the integrity and safety of packaged products.

Readmore...
airborne ultrasound, seal integrity testing, seal quality testing, container closure integrity testing, container closure integrity
101
15
Sep 2022

All About Airborne Ultrasound Technology

All About Airborne Ultrasound Technology

The integrity of container closure systems can be interpreted as their capacity to maintain a sterile barrier against potential contaminants that could compromise the quality of the end product. The sterile barrier can be damaged by even the smallest leak, which might affect the product's healing properties. Over the years, dye ingress and microbial ingress are common leak testing methods. It has been proven that they provide inaccurate and subjective results. As a result, regulatory organizations have mandated a shift towards more deterministic test procedures that can be controlled, calibrated, and provide a definite determination of CCI. Airborne Ultrasound technology is a deterministic test method mentioned in the revised USP< 1207> Chapter Guidance for seal quality testing.

Explain Airborne Ultrasound Technology

Airborne Ultrasound Technology is a technique for testing the seal quality. It is an ASTM test method F3004 and the Food and Drug Administration (FDA) approved standard for seal quality testing. Such inspections are mainly done to provide improved seal quality inspection of pouches, flexible packages and tray seals. Airborne Ultrasound technology ensures in-depth seal quality analysis and is applicable to multiple packaging materials such as Tyvek, paper, foil, film, aluminum, plastic and poly.

In this technique, sound waves are reflected when ultrasound waves travel through the packaging seal. In the presence of a leak or fault, the signal intensity is diminished or removed. To find the leak, these fluctuations are carefully monitored. More sound is reflected, and less sound is transferred through the seal as the acoustic difference between the medium increases (most evident at the transition from a gas to solid state). The inability to detect non-leak defects is a common challenge faced by most leak test methods. However, users may recognize a variety of seal defects, including visible and invisible, leaky and non-leaking, process-related and random, using airborne ultrasound technology.

Seal-Scan and Seal-Sensor

Under this technique, VeriPac leak testers are connected to a test chamber specially designed to hold the sample package. The package that has been put inside the test chamber is subjected to vacuum. A single or dual vacuum transducer technology is used to monitor the vacuum level as well as how the vacuum changes during a predefined test period. The existence of leaks and other defects within the package is determined by monitoring variations in an absolute and differential Seal-Scan® and Seal-Sensor™ are the two configurations of Airborne Ultrasound technology. Seal-Scan® technology inspects and analyzes pouch seals non-destructively offline. This deterministic, quantitative, high resolution method inspects pouch seals for defects and seal integrity for consistency. Testing does not involve sample preparation, and is non-invasive as well. The technique includes advanced digital imaging software tools for process control that allow in-depth seal quality analysis. Utilizing Airborne Ultrasound technology, Seal-Scan® systems evaluate seal quality and integrity in accordance with ASTM Test Method F3004-13. Seal-Scan® is a semi-automatic inspection system with an x-y drive for the detection of seal defects, seal characterization, and material analysis.

Seal-Sensor™ is an Airborne Ultrasonic technology that inspects the final pouch seal 100% online in a non-destructive manner. Seal-Sensor™ is a deterministic, quantitative, fast, and reliable way to test for defects in pouch seals. The Seal-Sensor™ technology detects defective seals, seals with partial or weak areas, and several other typical seal defects that may not be physically visible but have an impact on the quality, and life span of the product. A pass/fail result and quantitative, traceable data are generated by a single linear scan (L-Scan) of the pouch seal in less than one second.

Why Use Airborne Ultrasound Technology?

  • Deterministic inspection technique yielding quantifiable results.
  • Non-destructive, non-subjective, and does not need sample preparation.
  • Independent of color, transparency, print, surface polish, or porosity, it is applicable to all materials and combinations.
  • Can be integrated completely online to identify defects in the final pouch seal.
  • Consistent and dependable results.
  • Referenced in USP Chapter 1207.Inexpensive method for evaluating the seal integrity of the final pouch seal.
  • Describes the overall quality and uniformity of the seal.

Both Seal-Scan® and Seal-Sensor™ technologies utilize non-contact airborne ultrasonic testing technology. With the innovation of Seal Scan and Seal-Sensor, Airborne Ultrasound technology has emerged as the most reliable technique for non-destructive seal integrity testing, both in offline laboratory testing for seal quality analysis and 100% inline testing on the production line.

Readmore...
airborne ultrasound, seal quality testing, seal integrity testing, container closure integrity, cci technologies
1486
10
Jun 2022

VeriPac 310 Package Integrity Solution for Food Package Industry

VeriPac 310 Package Integrity Solution for Food Package Industry

Packaging has a significant impact on the quality of the products and influences customer purchase decisions. Both of these factors provide significant issues for product design, particularly in the case of food packaging. No other product incorporates as many innovative and improved packaging advancements as food. Due to the increased need for convenience, packaging should be easy to handle, easy to open, resealable, or must be able to be heated directly in a microwave. Furthermore, food packaging must be properly sealed to protect product quality and shelf life. Ensuring safe food packaging through testing and analysis is key to safeguarding human health and protecting the food product.

Food Package Integrity Testing Using VeriPac 310

The VeriPac 310 is a non-destructive, non-invasive leak detection and container closure integrity testing method for the food industry. VeriPac systems eliminate waste and provide operators with a comprehensive view of package quality. The VeriPac 310 test cycle generates real-time results from accurate quantitative measurements, identifying packaging defects before important process concerns develop. Tests can be run in any order and even on the same sample several times. Good packages can be returned to the packing line intact. Testing is more dependable, sensitive, and efficient than destructive procedures like the water bath or burst test. The ASTM-approved patented vacuum decay leak test technique F2338-09, acknowledged by the FDA as a consensus standard for package integrity testing, is used in the VeriPac 310.

Technology Overview

The test method begins by connecting the VeriPac leak testers to a test chamber that is specifically designed to accommodate the package to be evaluated. The package is placed into the vacuum-sealed test chamber. The absolute transducer technology is used to monitor the vacuum level as well as the change in vacuum throughout a predetermined test period in the test chamber. The presence of leaks within the package is indicated by the changes in an absolute and differential vacuum. Test systems can be configured to operate manually or automatically. This inspection method is appropriate for offline laboratory testing as well as production applications for QA/QC statistical process control. The test cycle is non-invasive and non-destructive to both the product and the package, taking only a few seconds.

VeriPac 310 Benefits

  • Non-invasive inspection system for leak detection
  • Deterministic, quantitative test method
  • Non-destructive, non-subjective, no sample preparation
  • ASTM test method and FDA recognized standard
  • Cost-effective and economical
  • Supports zero waste initiatives
  • Measures integrity of the entire package

Every packaged food product has a seal that keeps the food item safe inside the packaging. Therefore, food package seal quality testing is performed to ensure that the food packaging used is safe for both customers and the environment. PTI offers a diverse range of testing methods that are applicable to food product packages.

Readmore...
container closure integrity, container closure integrity testing, seal quality testing, seal integrity testing, cci technologies
59
30
Nov 2021

Evaluating Package Integrity Solutions for Vials

Evaluating Package Integrity Solutions for Vials

Sterile pharmaceutical products including vials are manufactured with extreme accuracy and zero tolerance for error. As a result, pharmaceutical manufacturers place a high value on their quality control procedures. This is to guarantee that the items meet the quality requirements for their intended application. Packaging is essential for maintaining product quality and providing protection from harmful external forces. Package integrity testing, in addition to selecting suitable packing material, is a crucial component in preserving product quality. It prevents external contamination that can have a negative influence on drug quality by ensuring that there are no leaks within the package.

An effective package integrity solution for vials will ensure:

  • The vial is well-protected from external factors that might affect its quality, such as light, oxygen, moisture, and temperature
  • It is safe from contamination

Various Container closure integrity testing (CCIT) technologies are available today. Helium leak detection is one of the leading methods used for testing the container closure integrity of vials.

Helium Leak Detection Technology for CCI testing of Vials

The process of detecting leaks in various enclosed or sealed systems by utilizing helium as a tracer gas and measuring its concentration as it leaves due to leakage is termed Helium leak testing. Simply say, a vial that consists of a container and an elastomeric closure is a good example for package system. The vial is filled with helium and evacuated. The quantity of helium that escapes from the package is quantified and expressed as a leak rate. A prefilled syringe, a foil pouch, or a cold form blister card are another example. Each of these package types is meant to keep the pharmaceutical product enclosed while keeping out potentially harmful environmental pollutants like germs, or even gases.

Helium gas has a number of qualities that make it the best choice for package leak testing

  • As helium gas is one of the smallest molecules, it may reliably and rapidly breach pathways.
  • It is an inert gas that won't react with the components being tested, therefore it's perfectly safe to use.
  • Because of its limited presence in the atmosphere (less than 5ppm), instrument noise from atmospheric helium is intrinsically minimal, resulting in very precise findings.

Following are the advantages of using helium leak detection technology for CCI testing

  • Highly sensitive leak test method for CCI
  • Specially designed for detecting extremely small leaks that other leak test methods failed to detect.
  • The leak test thresholds might be adjusted as low as 1 x 10 -10 cc/s using a high vacuum technique. This allows unique comparison amongst package components.

Sterility of vials is essential for reducing and preventing infection in patients when using the medicine. As a result, package integrity testing is essential for regulatory approval of sterile pharmaceutical products, and medical devices. When it comes to package integrity testing of vials, the terms packaging integrity and container-closure integrity are sometimes used interchangeably.

At CCIT, we provide a wide range of quality leak testing equipment for pharmaceuticals including vials. With our high-grade non-destructive testing equipment, you can ensure that your products meet stringent quality requirements.

Readmore...
container closure integrity testing, container closure integrity, cci technologies, seal integrity testing, seal quality inspection
1677
16
Nov 2021

Vacuum Decay Technology for Quality Control Assurance of Parenteral Products

Vacuum Decay Technology for Quality Control Assurance of Parenteral Products

A significant challenge faced by the pharmaceutical industry is insuring the container closure integrity of parenteral products. Therefore, maintaining the quality of parenteral products is critical in order to make sure they are actually sterile and safe for delivery to patients. Parenteral products are often packaged in a variety of formats. Liquid-filled containers, such as ampoules, syringes, and vials are the most prevalent forms. Microbial infection, exposure to gases, and water vapor can all lead to product degradation if the packaging is breached. Pharmaceutical products that save lives might lose their effectiveness or even cause adverse effects. As a result, container closure integrity is an important factor of the lifetime of a sterile pharmaceutical product.

Ensuring quality control with Vacuum decay technology

Vacuum decay is a test technique for determining closed container integrity (CCI) for high-risk packaging applications that provides quantitative and deterministic quality assurance with rapid, consistent, and reliable test results. The Vacuum decay method provides non-destructive and non-invasive leak detection in hermetically sealed containers. This is actually a simple test method and it tests container integrity using basic physical characteristics. It entails drawing vacuum on a package inside a test chamber and checking for any deterioration in the vacuum level, which would indicate a leak. As a non-destructive alternative to the water bath leak test, the approach has gained popularity. It saves money by not wasting items during the leak test.

This technique is applicable to a wide range of packaging formats. The Food and Drug Administration (FDA) has designated the standard vacuum decay leak test technique (ASTM F2338) as a consensus standard for container closure integrity testing. The test technique is mentioned in the United States Pharmacopeia Chapter on CCI (USP Chapter 1207) and is listed in ISO 11607.  It may be used to evaluate rigid or flexible packaging, as well as plastic, glass, or metal containers, making it useful in the pharmaceutical and food and beverage sectors.

Benefits of using Vacuum decay technology

  • Non-destructive, non-invasive, no sample preparation
  • Cost effective with rapid return on investment
  • ASTM test method and FDA standard
  • Pass/fail results backed by quantitative test data
  • Capability to test multiple packages in a single test cycle
  • Non-subjective, accurate and repeatable results

CCIT.s.a are leading providers of various CCI test methods including Vacuum Decay, MicroCurrent HVLD, and Helium Leak Detection, manufactured by our affiliate PTI Inspection Systems in the United States. We specialize in test method development for all container closure integrity of pharmaceuticals, medical device and nutritional products and package quality testing projects. Our aim is to provide customers with deterministic non-destructive technologies for container closure integrity and then provide full support in the complete implementation of CCI systems.

Readmore...
container closure integrity testing, container closure integrity, CCI test, seal integrity testing, vacuum decay technology
1138
02
Jun 2021

Evaluating Relevance of Seal Quality Inspection in Medical Device Industry

Evaluating Relevance of Seal Quality Inspection in Medical Device Industry

Talking about medical devices, ensuring seal quality or seal strength of sterile medical device packaging are extremely crucial as well as highly regulated. Medical device package seal contains a flexible barrier which is joined to the rigid container through an advanced adhesive. A defect in the seal such as an incomplete or weak seal can initiate leaks, contaminating the product and reducing its shelf life. Hence, for quality control purposes, seal quality inspection of medical device packages is mandatory.

Historically, manual inspection was the most popular method used to inspect seal defects. Although this is covered by an ASTM method (ASTM F1886), it lacked accuracy and reliability in terms of test results. “There is a huge shift in the industry towards deterministic and quantitative test methods,” comments Oliver Stauffer, Chief Executive Officer at PTI - Packaging Technologies & Inspection. “This includes Vacuum Decay and Airborne Ultrasound for medical device applications. The industry is currently moving away from dye ingress and manual visual inspection because there are so many blind spots in applying them and there’s a huge false sense of assurance.”

Airborne Ultrasound technology is a non-destructive seal integrity test method capable of advanced seal quality inspection of pouches and flexible packaging. Seal defects can be of two types- leak defects and non- leak defects. While it is easier to detect a leak defect, detecting non-leak defects can be a challenge for manufacturers. However, Airborne Ultrasound technology allows non-destructive Container Closure Integrity testing of multiple seal defects including visible and invisible, leaking and non-leaking, process-related and random- making it a practical solution for medical device seal quality inspection.

Technology overview

Airborne Ultrasound technology utilizes ultrasound waves to detect defects in package seals. Ultrasound waves are passed through the material as the package seal moves along the sensor head. This causes reflections of sound waves. In the presence of a leak, the signal strength is either eliminated or reduced. Such variations in signal strength are analyzed to identify the defects. Seal scan testing is a practical solution to recognize defects, such as inconsistent seals or areas of seals that fail to meet minimum width requirement. Seal-Scan® and Seal-Sensor utilize non-contact airborne ultrasonic testing technology for advanced seal quality inspection. Seal-Scan® technology has been proven in the field by several online and offline units installed.

Benefits of Airborne Ultrasound technology

  • Deterministic seal quality inspection method that produces quantitative results.
  • This method works for any material type and combinations regardless of color, transparency, print, surface finish or porosity.  
  • Non-destructive and non-subjective test method that requires no sample preparation.
  • Technology can be integrated for 100% online defect detection of the final pouch seal.
  • Repeatable, reproducible and reliable results for seal quality inspection.
  • Cost-effective solution for seal integrity testing and seal analysis that characterizes overall quality and uniformity of the seal. 
Readmore...
container closure integrity testing, seal integrity testing, seal quality inspection, airborne ultrasound technology
65

Popular Blogs

Tags

CCIT for Pharmaceutical Package Integrity

Jul 23, 2021   |   2265

Container Closure Integrity Testing of pharmaceutical packaging ensures that the products remain intact throughout its shelf life or until it reaches the end user.

Why is Seal Integrity Testing of Medical Device Packaging Important

Jul 29, 2021   |   2030

For sterile medical devices, seal integrity testing ensures product efficacy, shelf-life stability, and microbial sterility. Airborne Ultrasound technology is a non-destructive Container Closure Integrity test method, capable of examining seal quality for defects.

A Guide to MicroCurrent HVLD Technology

Aug 05, 2021   |   1899

In the case of parenteral drug product containers, HVLD technology is ideal for CCI testing in cases where packaging is less conductive than the liquid within.

Evaluating Package Integrity Solutions for Vials

Nov 30, 2021   |   1677

CCI testing is a critical component of quality assurance for vials. The defects which cause a sterile vial to leak are not necessarily defects that will be detected.

Pre-filled Syringes Leak Detection with Vacuum Decay Vs MicroCurrent HVLD Test Methods

Nov 23, 2021   |   1574

Container Closure Integrity (CCI) can be challenged using various test methods, not all of which are equally capable of detecting leaks in the package.
Popup