Blogs CCIT

Feb 2022

How VeriPac 355 Ensures Quality and Integrity of Pharmaceutical Packages?

How VeriPac 355 Ensures Quality and Integrity of Pharmaceutical Packages?

The pharmaceutical packaging industry is constantly developing as pharmaceutical manufacturers require reliable and efficient packaging solutions that meet a variety of requirements. Packaging is essential for the safe storage and administration of pharmaceutical products. Packaging pharmaceuticals is important not only for storing and protecting products but is also helpful in identifying, marketing, and promoting different brands, and making pharmaceutical products easier to use. Vials, blister packs, bottles, syringes, ampoules, etc are the most common pharmaceutical packages. The packages must perform correctly to ensure that the drug product remains uncompromised throughout the distribution cycle and shelf life. These packages are later tested to guarantee their quality and integrity.

Testing Package Integrity Using VeriPac 355 Series

VeriPac 355 is a non-destructive micro leak detection device for testing container closure integrity and package integrity on a variety of products and packaging types. This system is specially designed to test containers for dry product gas leaks as well as liquid leaks. Since it is non-destructive and does not need sample preparation, the VeriPac 355 can be integrated into protocols at any step in the handling process. The VeriPac 355 is the ideal non-destructive quantitative test technique for various pharmaceutical and food applications, with the capacity to detect leak rates as low as 0.2 cc/min depending on package parameters. The VeriPac 355 core technology is based on the ASTM vacuum decay leak testing method (F2338-09), which is recognized by the FDA as a consensus standard for package integrity testing. VeriPac leak test instruments were used to develop this test method.

Technology Overview

The VeriPac 355 leak tester is connected to a test chamber intended to hold the package to be tested. The package is placed inside the vacuum-sealed test chamber. High-resolution absolute transducer technology is utilized to monitor the test chamber for, both the level of vacuum and the change in vacuum during a pre-defined test duration. This is capable of detecting both gross and micro leaks. The test cycle is only a few seconds long and the results are objective. The testing is non-destructive to both the product and the package.

The sensitivity of a test is determined by the sensitivity of the transducer, the package design, the package test fixture, and the crucial test parameters of time and pressure. Test systems can be configured to operate manually or semi-automatically. This method is suitable for offline laboratory testing and QA/QC statistical process control.

Advantages of VeriPac 355

  • Non-destructive, non-subjective, and no sample preparation is required
  • Deterministic, quantitative test method
  • Detection of defects down to 0.2 ccm (5 microns)
  • High sensitivity, repeatability, and accuracy
  • Operator receives a PASS/FAIL result within a short cycle time
  • Portable modular design with a small footprint
  • FDA standard and ASTM F2338 test method

VeriPac technology is the optimal non-destructive solution for determining container closure integrity in a variety of package configurations. The strategy for choosing the right VeriPac model is based on the package type and the required leak test sensitivity. Configurations can be optimized and customized to the needs of each application. The VeriPac Series will analyze a wide range of high-risk package applications and ensure that the product fulfills regulatory standards and customer requirements for integrity.

container closure integrity testing, container closure integrity, vacuum decay leak testing, cci technologies, cci test
Feb 2022

Automation of Class III Medical Device Packaging

Automation of Class III Medical Device Packaging

Testing Container Closure Integrity (CCI) is crucial for ensuring the quality of Class III medical devices. Class III medical devices are sterile components that are designed to be inserted directly into the human body. These devices often sustain or support life, are implanted or pose an unreasonably high risk of disease or damage. A compromised package can serve as a vehicle for microbial transmission and compromised sterility, leaving patient safety at risk. When bacteria or other impurities enter the container, the device ceases to be a treatment and becomes a danger to the patient. Similarly, a breach of the seal affects the sterility of the device and may present a serious quality concern at a key point of usage.

Testing Challenges in the Medical Device Industry

There are three basic approaches to package integrity testing:

  • 100% in-line testing: All products in a batch are tested on a high-speed production line at an acceptable level of CCI assurance.
  • Small batch testing: Testing a statistically significant batch size for certain quality parameters and extrapolating to match the quality of the manufacturing lot.
  • Testing Offline: Operators test packages individually or in smaller batches.

Dye penetration is a technique for identifying defects in package body and seals that has a variable detection capacity. When carried out correctly, the approach can identify pinholes and channel defects as small as 20 microns. This method is only used to validate the packaging process and offers minimal value to in-process quality monitoring. The method is time-consuming to implement and provides limited information in the effort to ensure the quality of high-risk applications.

For CCI testing, the majority of medical device manufacturers use a 100% in-line manual visual inspection technique. Manual visual inspection has been proved to be one of the least reliable techniques for ensuring quality. The failure of manual visual inspection is caused by a number of factors. According to ASTM test method F1886, a manual visual inspection may detect 75-micron channel defects in a transparent seal 60-100% of the time. Although manual visual inspection can be applied as a 100% test method, performance on the task decreases significantly over time. This method is not applicable if the package format is not transparent or semi-transparent.

How Vacuum Decay and Airborne Ultrasound Technologies are Automated?

Vacuum Decay is a deterministic method proven to offer predictable and reliable results for CCI testing of high-risk package applications. This is an ideal solution for non-porous medical device applications. When the major focus of the inspection is the final seal of a porous package, Airborne Ultrasound is exceptionally efficient and reliable at detecting seal defects that are invisible to the manual visual inspector. Both approaches have shown to be reliable non-destructive testing methodologies, and one or the other can be used for inspection based on the unique features of the product and container.

The automation of each technology looks a little different. Vacuum Decay enables approximately 25 to 50 samples per minute, with low throughput detecting single-digit micron leak sizes. Airborne Ultrasound is a rapid-fire sensor that transmits 1000 pulses per second of sound through the seal. The final seal of Tyvek® pouches and other flexible packaging systems may be scanned at a rate of 20 inches per second (~40 cm/sec), with the capacity to detect the most frequent seal faults and seal quality concerns. Both methods enable a production line to ensure quality while reducing production throughput.

The Airborne Ultrasound technology offered by PTI can be automated in many ways. Basically, the technology can measure the quality of a quantitative seal in any way that the pouch seal can pass through the ultrasound inspection head. Ultrasound can be applied to the production flow, which captures seal quality when exiting a band-sealer or transferring pouches through a production line. Robotic handling may also be used to do a full 360-degree seal inspection on all pouch seals. Airborne Ultrasound has the flexibility to be deployed in a variety of production lines and has high reliability in detecting critical defects.

Vacuum decay is often utilized for both Tyvek® trays and non-porous container types. While a vacuum takes longer to do a test (about 5 seconds on a Tyvek tray), the sensitivity and stability of this technology make it perfect for low output applications with high sensitivity requirements. Robotic handling solutions can serve many test stations at the same time, allowing for increased product throughput without losing sensitivity.

Medical devices are packaged and delivered in a variety of ways, ranging from porous flexible packaging to non-porous rigid containers. The range of product types and packaging options create unique inspection challenges that must be overcome in order to assure seal strength, sterility, and quality. Airborne Ultrasound and Vacuum Decay offer 100% testing capabilities as well as an accurate inspection that includes quantitative test results and a pass/fail result. These new automated technologies, with more sensitive leak detection capabilities, inspect containers at a higher rate.

airborne ultrasound, vacuum decay leak testing, container closure integrity testing, container closure integrity, cci testing
Feb 2022

Development and Validation of CCI Testing Method for Pre-filled Syringes

Development and Validation of CCI Testing Method for Pre-filled Syringes

Pre-filled syringes are becoming more popular as a preferred container closure system for biologics. Pre-filled syringes must offer an inherent barrier that maintains drug product stability and sterility throughout its entire shelf life as a primary container closure system. The ability of the system to retain its microbial barrier integrity must be checked and demonstrated by the drug manufacturers. In 2008, the FDA endorsed CCI testing as part of the sterile product stability protocol.

The pharmaceutical industry has witnessed substantial technical developments in CCI testing in response to rising regulatory demands. MicroCurrent HVLD, Vacuum Decay Leak Testing and Helium Leak Detection are examples of new technologies that have proven enhanced detection capabilities above traditional Dye and Microbial Ingress approaches. Many of the technologies have been employed for CCI testing of drug product stability.

CCI Testing Strategy for Development

Many CCI failure modes can occur throughout the life cycle of a syringe, from component production to drug product filling and sealing, device assembly and packaging, and finally distribution and storage. It is critical to create a comprehensive plan for conducting CCI testing across the whole syringe life cycle.

The creation of the CCI testing technique begins with a detailed study of the construction, design, and manufacturing procedures used in syringes. The failure modes and impacts associated with each aspect of CCI were identified first. The next step was to evaluate whether CCI testing is required, as well as the intended uses and testing frequencies, using a risk-based approach. Knowing that the needle shield compartment seal integrity had been verified by the component supplier, apply a non-routine CCI test to validate its seal integrity during drug product loading and sealing, as well as during device assembly. To ensure CCI was achieved and successfully maintained, implement a complete set of CCI tests across the entire product development cycle for the product-containing syringe barrel compartment.

Method Development and Method Validation

Method development consists of optimizing testing parameters and determining the appropriate pass/fail threshold.

  • Testing parameters optimization
  • Initially, several defect standards of known sizes were examined alongside undamaged samples using varied testing conditions. The relationships between key method parameters and instrument responses to intact and defect samples were comprehensively investigated, with the objective of determining a set of variables that give optimal separation between intact and defect samples. i.e. signal-to-noise ratio or SNR.

  • Pass/fail threshold determination
  • The improved method was utilized to evaluate different lots of filled intact syringes representing relevant product variations, such as drug product batches, and packaging locations and lines, in order to define the preliminary pass/fail threshold. For intact samples, the results of the tests were statistically assessed to determine the instrument baseline and variation (σ). Typically, the pass/fail threshold should be 10 σ higher than baseline. The pass/fail threshold was then further refined and verified by testing defect standards of known sizes.

CCI testing techniques were validated for the pharmaceutical product package. Since the drug product formulation and package design may change during the early development stages, a step-by-step approach was adopted to validate the methods in line with the product development stages. Once product design and packaging design are complete, the methods are fully validated to support CCI testing for initial consistency and process evaluation. The power of the additional long-term method may be further validated before this method is implemented in QC laboratories for routine testing.

During package and pharmaceutical product development and manufacturing, properly selected and verified methodologies are critical for demonstrating container closure integrity. It should be noted that existing CCI testing methods do not provide an optimal solution for all pre-filled syringe CCI testing requirements. To maintain total container closure integrity, an integrated solution involving CCI testing as well as additional engineering and administrative controls is required.

parenteral product leak testing, container closure integrity, CCI testing, CCIT, vacuum decay leak testing
Jan 2022

A Quick Rundown on Package Inspection Guidelines for Sterile Medical Products

A Quick Rundown on Package Inspection Guidelines for Sterile Medical Products

Class III medical devices have a unique combination of criteria and package features that necessitate a comprehensive approach to determining the best inspection procedures. For medical package inspection, there are a variety of methods that require a thorough understanding to assure quality.

Manual visual inspection has been the most common form of inspection for medical device packaging. While an ASTM standard (ASTM F1886) covers this concept, it may not be applicable for all applications and has limitations. Even though a 75-micron channel defect can be detected by manual visual inspection, the ASTM method F1886 indicates that the chance of detection ranges from 60% to 100%. This vast range of uncertainty does not give the level of assurance required for the packaging of high-risk medical devices.

Although certain offline leak detection techniques can offer a quantitative evaluation of seal quality, they miss some of the most prevalent seal problems seen in Class III medical device packaging. Testing peel strength or utilizing other destructive methods will not reveal random seal problems. For class III medical devices, online non-destructive inspection procedures are excellent since they provide quality control with comprehensive manufacturing lot data.

All Class III medical devices must be sterile, however, container materials and design differ widely. A non-porous pouch or tray demands an entirely different technique than a porous pouch or tray. Tyvek® offers a sterile barrier, and the porosity of the material limits the leak test procedures that may be used on the package body. When it comes to porous packaging, the focus of online inspection moves away from leak detection and toward seal quality evaluation.

Technology Overview

Vacuum decay and Airborne ultrasound are the two main methods used by PTI/CCIT to inspect medical device packaging. Both methods are aimed at providing quantitative and deterministic test results in order to assess package quality. In terms of function and performance, the two technologies are entirely different. Package integrity and leak path detection are the main objectives of Vacuum decay. Meanwhile, Airborne ultrasound technology focuses on package seal inspection and seal quality. Both approaches aim to meet the basic requirements of being reliable and sensitive inspection procedures for Class III medical device applications.

Vacuum Decay (ASTM F2338)

Vacuum decay is the most practical and sensitive vacuum-based leak test method of CCI. When testing pouches, a versatile adjustable test chamber may be utilized to test pouches of various sizes. The package is then placed into the vacuum-sealed test chamber. The level of vacuum, as well as the change in vacuum during a pre-defined test duration, are both monitored during the short test cycle. The change in vacuum indicates the existence of leaks and defects within the package. Vacuum decay leak testing is a go-to standard for sterile products because of its sensitivity and dependability. The approach is ideal for laboratory offline testing and production applications for quality assurance process control, since test equipment may be developed for manual or automation operation.

The ASTM Vacuum decay leak test technique (F2338), which has been accepted by the FDA as a consensus standard for package integrity testing, was developed using PTI VeriPac technology. As a deterministic test technique for package integrity test solutions, Vacuum decay is mentioned in ISO 11607 and the new USP 1207 guideline document.

Airborne Ultrasound (ASTM F3004)

Airborne Ultrasound is an ASTM Test Method F3004-13 and is one of the most effective methods for non-destructive seal quality inspection of flexible packaging. It is mentioned in ISO 11607 and the new USP 1207 guidance document. Most inspection methods are challenged by the leaking nature of porous packaging, but Airborne ultrasound, with its non-destructive measure of seal quality, effectively overcomes those challenges.

The non-contact Airborne ultrasonic testing technique is used in both Seal-Scan (Offline) and Seal-Sensor (Online). Ultrasonic waves propagate through the material as a package seal passes through the sensor head, producing sound waves to be reflected. When defects are encountered, the signal intensity is reduced or eliminated. The larger the acoustic gap between mediums, the more sound is reflected and less sound is transferred through the seal.

The variety of package forms and materials makes inspecting the integrity of class III medical device packaging a challenge. CCIT's scientists and engineers have vast industry experience and can prove a complete solution, including test method development and equipment validation for Class III medical device packaging.

package integrity test solutions, vacuum decay leak testing, container closure integrity testing, container closure integrity, cci technologies
Jan 2022

Package and Seal Integrity Testing Techniques for Nutritional Packaging Inspection

Package and Seal Integrity Testing Techniques for Nutritional Packaging Inspection

Testing the integrity of package seals helps ensure that nutritional packaging provides required product protection. Maintaining the reliability of package seals is critical for product quality and food safety. Airborne Ultrasound and Vacuum Decay technology can be used for testing package and seal integrity of nutritional packages. These CCI technologies produce quantitative, and repeatable results, due to their deterministic nature. The primary purpose of implementing these testing methods is to ensure the safety of consumers.

Overview of Nutritional Packaging Inspection

Nutritional packaging plays a significant role in securely delivering the product. The majority of nutritional products are shelf-stable in nature, therefore package performance is typically a concern. Chemical reactions occur naturally in all nutritional products. Any break in the nutritional packing might lead to the products deteriorating due to air, moisture, and microbial exposure. Fats and other nutrients for infants might become rancid and inactive. The quality and safety of the contents that reach the customer are determined by nutritional packaging.

Package and seal integrity techniques have great expertise in the packaging industry, which helps in inspecting nutritional packages in the most efficient method in order to preserve package and product quality. For the food and nutritional packaging industries, CCIT provides a variety of technologies and solutions. The two most common nutritional package inspection technologies are vacuum decay and airborne ultrasound. While vacuum decay is utilized for applications such as filled and sealed rigid containers, dry products in pouches, and flexible packaging. Retort pouch final seal inspection can be achieved using non-destructive with airborne ultrasound technology.

Technologies to Assure Package and Seal Integrity

Vacuum Decay Technology

Vacuum decay is a package test method for vacuum-based leak detection. It is considered one of the most practical and sensitive test methods used in nutritional package inspection. When compared to destructive test procedures, this technology not only provides for a better understanding of package quality but also minimizes waste. As a result of the waste reduction, the return on investment is higher, and the operation is closer to green initiatives.

The Vacuum Decay leak testing method operates by enclosing package samples in an evacuation test chamber with an external vacuum source. The test chamber is monitored for both the level of vacuum and the change in vacuum during a pre-defined test duration using single or dual vacuum transducer technology. The existence of leaks and defects within the package is indicated by variations in an absolute and differential vacuum. Test systems can be designed to be operated manually or fully automated.

Airborne Ultrasound Technology

Pouches are the common form of packaging for most nutritional products. Hence, it is necessary to ensure the package integrity of such pouches. Airborne Ultrasound is a non-destructive and non-invasive method of inspecting seal quality. In this method, ultrasound waves are permitted to pass through the package seal, causing sound waves to be reflected. The fluctuation in the reflected signal intensity is used to detect defects.

Airborne Ultrasound technology is available in both online and offline solution options. It has been proven to be one of the most successful non-destructive testing procedures for flexible package seals. According to ASTM F3004-13, this is the standard test technique for evaluating seal quality and integrity using airborne ultrasound. This method has high applicability in the food and nutrition industry.

Vacuum Decay technology and Airborne Ultrasound technology are both ASTM test methods and also FDA consensus standards for package integrity and seal quality inspection of nutritional products. An appropriate testing method for inspecting nutritional packages is selected based on the nature of the product and its package.

seal quality inspection, cci technologies, packaging integrity testing, vacuum decay leak testing, container closure integrity testing
Nov 2021

Pre-filled Syringes Leak Detection with Vacuum Decay Vs MicroCurrent HVLD Test Methods

Pre-filled Syringes Leak Detection with Vacuum Decay Vs MicroCurrent HVLD Test Methods

Pre-filled syringes have a significant role in the injectable drugs market. Because of its convenience, efficiency, and patient safety, pre-filled syringes are now widely utilized in a variety of medical areas. Pre-filled syringes, which are rapidly replacing traditional syringes are frequently used to deliver vaccinations. Defects in pre-filled syringes are mostly determined by pharmaceutical product design and syringe process design. Patient-related concerns are also a regulatory concern. As a result, it is critical for manufacturers to have a thorough understanding of the various tests involved in order to assure patient safety.

Evaluating leak test using Vacuum Decay Vs MicroCurrent HVLD Test Methods

Manufacturers perform Container Closure Integrity testing to ensure that the product maintains sterility and microbiological quality until the point of use. Container closure integrity testing evaluates a container closure system's capacity to maintain a sterile barrier against contaminants that might affect the quality of the resulting pharmaceutical and biological products. Various test techniques may be used to challenge Container Closure Integrity (CCI), however, not all of them are equally capable of finding package leaks. Vacuum Decay and High Voltage Leak Detection (HVLD) are the two deterministic test techniques for CCI mentioned in USP 1207, that are frequently used for parenteral products.

Technologies Overview

Vacuum decay leak testing is a CCI test method that has been proven over decades and improved with new technology innovations. When compared to destructive testing techniques, non-destructive testing not only provides for a better knowledge of package quality but also minimizes waste. As a result of the waste reduction, the return on investment will be higher.

Vacuum Decay method operates by enclosing sample packages in a tight-fitting evacuation test chamber with an external vacuum source. The test chamber is monitored for both the level of vacuum and the change in vacuum during a set test duration using either single or dual vacuum transducer technology. The existence of leaks or flaws within the package is indicated by variations in an absolute and differential vacuum. The Vacuum Decay method for leak detection of pre-filled syringes have proven to be an effective method of testing.

Benefits of Vacuum Decay

  • ASTM Test Method F2338 and referenced in USP 1207 Guidelines
  • Deterministic, quantitative test method
  • Repeatable, rapid, and reliable testing
  • Non-destructive technology
  • Completely tool-less with no changeover to test different packaging formats

High Voltage Leak Detection (HVLD) is a deterministic CCI test method for package inspection of non-porous pharmaceutical and parenteral goods. This technique is based on the fundamental characteristic of electricity. MicroCurrent HVLD technique, the latest evolution of HVLD developed by PTI, promises to provide a high degree of CCI assurance throughout the whole range of parenteral goods.

This method operates by scanning the container which can be done offline in the laboratory or online in an automated robotic platform. On one side of the container, a high voltage is supplied, while the other side has a ground probe. If there is no leak in the package, the two container walls (high voltage and ground) offer complete electrical resistance, and no substantial current is measured passing through the vial. The break-down resistance is achieved when there is a micro-leak or fracture in one of the container walls, and the current passes through. HVLD is the only leak detection technique that does not require mass to flow through a defect location, instead of relying on electricity to pass through a crack.

Benefits of MicroCurrent HVLD

  • Non-destructive technology
  • Non-invasive, no sample preparation
  • High level of repeatability and accuracy
  • Offline and 100% online inspection at high production speeds
  • Low voltage exposure to product and environment

Pre-filled syringes have emerged as a practical and dependable source for unit dosage medication as the pharmaceutical industry continues to seek possibilities to create convenient drug delivery techniques. We, at CCIT put a lot of effort into developing customized handling solutions that guarantee that syringes are moved without touching their piston to minimize product loss.

container closure integrity testing, container closure integrity, CCI test, microcurrent hvld, vacuum decay leak testing

Popular Blogs


Why Microcurrent HVLD is the most preferred CCI technique for Parenteral Product Leak Testing ?

May 24, 2021   |   925

Microcurrent HVLD is one of the most preferred container closure integrity testing method for Biological & Parenteral Product Leak Testing

Airborne Ultrasound Technology for Efficient Medical Device Package Inspection

May 28, 2021   |   867

Package integrity testing of medical devices is vital to ensure the products maintain quality and sterility throughout its shelf life or until it is administered.

Evaluating Relevance of Seal Quality Inspection in Medical Device Industry

Jun 02, 2021   |   773

Evaluating quality and integrity of package seal is an important criteria for medical device package inspection. Airborne Ultrasound technology allows non-destructive seal quality inspection of multiple device packages.

Pharma Package Testing CCI of High-Risk Pharmaceuticals

May 21, 2021   |   590

Pharma package testing now has become an integral part of the pharmaceutical industry when it comes to the package integrity of high-risk pharmaceuticals.

How has VeriPac Systems Raised Standards for Container Closure Integrity Testing

Jul 02, 2021   |   545

The VeriPac test methods are non-destructive, non-invasive inspection system for CCI and package integrity testing.